开启辅助访问 切换到窄版

"见远"行业视觉智能诊断方案

[复制链接]
作者:hanhongwen 
版块:
解决方案 解决方案-人工智能解决方案 发布时间:2018-4-26 22:25:46
2030

管理员

积分
6671
QQ
hanhongwen 发表于 2018-4-26 22:25:46 | 显示全部楼层 |阅读模式
一、简介
通过深度学习和图像处理算法,进行全自动生产流程管理,自动识别图像中的瑕疵或故障,以达到大幅节省人力,提高产品生产效率及精度稳定性的效果。

二、我们能解决的核心痛点

1、大幅节省人力
传统人工检测方式,无任何智能检测功能;
或有摄像头、有简单分析功能,
但无法解决大部分场景,人力投入大。
通过机器视觉智能诊断,大幅度节省人力成本。

2、质控保障
传统质检全靠人工一个一个看产品瑕疵,而人的经验、以及情绪等都会造成质量控制无法保障.
通过大量数据训练后算法识别精度可以非常稳定,以保障识别质量,加大产量。

3、提高效率
传统方式效率低,影响生产线的全自动化。
通过图像识别算法的不断迭代,精度稳定可靠,
促进生产线自动化,减少人工干预,提升效率。

三、适用场景/客户案例

1、工业-电池片瑕疵检测

2、环保-垃圾分类识别

3、养殖-猪行为识别

4、交通-道路裂缝检测

四、总体架构

技术架构
1.png


五、方案实现流程

1、数据采集
采集来源-成像设备
如:IP摄像机、工业摄像机、红外摄像机、显微镜、X光、光源、暗箱、导轨
成像要求:
图像清晰、照度均匀、缺陷部分尺寸(>10*10)、样本数量充足(>1000)

2、数据标注
数据标注:
是指通过视觉或者听觉,采用分类或者检测的方式,用工具把目标标识出来,并把标识结果保存为计算机模型训练需要的数据。
标注标准:
确定好标准是保证数据质量的关键一步,且标准与具体业务相关,业务上需要检测或者分类出来的目标,一般需要客户方提前定义标注标准。
标注平台
提供专业的图像标注平台。

3、模型训练及优化
强大的计算能力
利用阿里云强大GPU集群计算能力,可以实现模型训练的快速迭代。
雄厚的研发能力
吸收和采用国际先进的机器学习算法,研发团队不断研发新的深度学习算法,创新性的解决某一类场景中的工业故障。
算法与硬件平台结合
充分利用和发挥硬件性能,提高算法分析工业故障图片的时间; 针对分析工业场景中丰富工业故障图像,训练出可以替代人工的算法模型。

4、服务部署与联调
自主的软件架构
具有完全自主知识产权的服务软件架构,可以在公有云、私有云和客户物理服务器上部署算法服务。
完善的配套接口
服务提供了可视化展示和传统业务系统对接所需的底层数据,提供语言无关的标准化习题接口;
客户技术支持
提供完善的客户现场联调、系统对接、精度效率评估和客户培训等方面的技术支持;



如需架构咨询,点击与我交谈,祝你成功

↓↓↓


    15561578755
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表